Heterochromatin Regulates Cell Type-Specific Long-Range Chromatin Interactions Essential for Directed Recombination

نویسندگان

  • Songtao Jia
  • Takatomi Yamada
  • Shiv I.S. Grewal
چکیده

Mating-type switching in Schizosaccharomyces pombe involves replacing genetic information at the expressed mat1 locus with sequences copied from one of two silent donor loci, mat2-P or mat3-M, located within a 20-kb heterochromatic domain. Donor selection is dictated by cell type: mat2 is the preferred donor in M cells, and mat3 is the preferred donor in P cells. Here we show that a recombination-promoting complex (RPC) containing Swi2 and Swi5 proteins exhibits cell type-specific localization pattern at the silent mating-type region and this differential localization modulates donor preference during mating-type switching. In P cells, RPC localization is restricted to a recombination enhancer located adjacent to mat3, but in M cells, RPC spreads in cis across the entire silent mating-type interval in a heterochromatin-dependent manner. Our analyses implicate heterochromatin in long-range regulatory interactions and suggest that heterochromatin imposes at the mating-type region structural organization that is important for the donor-choice mechanism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromatin Structure Regulates Gene Conversion

Homology-directed repair is a powerful mechanism for maintaining and altering genomic structure. We asked how chromatin structure contributes to the use of homologous sequences as donors for repair using the chicken B cell line DT40 as a model. In DT40, immunoglobulin genes undergo regulated sequence diversification by gene conversion templated by pseudogene donors. We found that the immunoglob...

متن کامل

Long-range heterochromatin association is mediated by silencing and double-strand DNA break repair proteins

The eukaryotic genome is highly organized in the nucleus, and this organization affects various nuclear processes. However, the molecular details of higher-order organization of chromatin remain obscure. In the present study, we show that the Saccharomyces cerevisiae silenced loci HML and HMR cluster in three-dimensional space throughout the cell cycle and independently of the telomeres. Long-r...

متن کامل

Topoisomerase II regulates yeast genes with singular chromatin architectures

Eukaryotic topoisomerase II (topo II) is the essential decatenase of newly replicated chromosomes and the main relaxase of nucleosomal DNA. Apart from these general tasks, topo II participates in more specialized functions. In mammals, topo IIα interacts with specific RNA polymerases and chromatin-remodeling complexes, whereas topo IIβ regulates developmental genes in conjunction with chromatin...

متن کامل

Recombinational Repair within Heterochromatin Requires ATP-Dependent Chromatin Remodeling

Heterochromatin plays a key role in protection of chromosome integrity by suppressing homologous recombination. In Saccharomyces cerevisiae, Sir2p, Sir3p, and Sir4p are structural components of heterochromatin found at telomeres and the silent mating-type loci. Here we have investigated whether incorporation of Sir proteins into minichromosomes regulates early steps of recombinational repair in...

متن کامل

Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity

Telomeres are dynamic nucleoprotein structures that protect the ends of chromosomes from degradation and activation of DNA damage response. For this reason, telomeres are essential to genome integrity. Chromosome ends are enriched in heterochromatic marks and proper organization of telomeric chromatin is important to telomere stability. Despite their heterochromatic state, telomeres are transcr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 119  شماره 

صفحات  -

تاریخ انتشار 2004